CBSE CLASS 9TH: Heron Formula Proof










Drop an altitude (of length h) to the side of length c.


Then A = (1/2)c h,


So,


A2 = c2 h2 / 4.


Use the Pythagorean Theorem to obtain the following system:


(1) x2 + h2 = a2


(2) y2 + h2 = b2


(3) x + y = c


Substitute y = c - x into (2) and simplify.Then subtract


the result from (1).


You will find that


2cx = a2 - b2 + c2.


From (1),


4c2 h2 = 4a2 c2 - 4c2 x2


= (2ac + 2cx) (2ac - 2cx)


= (2ac + a2 - b2 + c2)(2ac - a2 + b2 -c2)


From (1),


4c2 h2 = 4a2 c2 - 4c2 x2


= (2ac + 2cx) (2ac - 2cx)


= (2ac + a2 - b2 + c2)(2ac - a2 + b2 -c2)


= ((a+c)2 - b2) (b2 - (a-c)2)


= (a+c+b)(a+c-b)(b+a-c)(b-a+c)


= (2s)(2s-2b)(2s-2c)(2s-2a)


= 16s(s-a)(s-b)(s-c)